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Potentially Toxic Elements in Contaminated Soils

Soil contamination as a result of anthropogenic activities is a widespread problem globally,
but can also have natural causes. Intensive industrial activities, inadequate waste disposal,
mining, spills, along with diffuse contamination through atmospheric deposition and
agriculture activities, can load soils with excessive amounts of potentially toxic elements
(PTEs). These not only represent a threat to the environment but may also be taken up by
plants and transferred into the food chain becoming a potential threat to human health’?.
Those of most concern include arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu),
mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn)**.

Potentially toxic elements in soils are partitioned into a number of binding phases,
incorporated in the solid phase, bound to the surface of the solid phase, bound to ligands in
solution, and as free ions in solution (Figure 1). Only the free ions in soil solution are
bioavailable and can be taken up by organisms.
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Figure 1. Partitioning of potentially toxic elements (PTEs) in soils.

Since PTEs cannot be broken down and an isolation of receptors is not possible in practical
terms, the only viable option to break the source-pathway-receptor linkage is to disrupt the
connection between the PTEs and the organism receptor (Figure 2). It is the manipulation of
bioavailability rather than that of the absolute concentration in soils that is important to
consider in terms of the application of remedial amendments to soils.
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Figure 2. The source-pathway-receptor model and remediation options

Soil amendments, including biochar, are often applied to contaminated soils to immobilize
potentially toxic elements thus reducing the risk of being taken up by organisms (e.g., acting
on the pathway that leads to the contaminant being immobilized).

Biochar as a Remedial Amendment
e Most biochars have a greater surface area, and after aging can also have a greater
cation exchange capacity than some soils, and are thus capable of increasing the
retention of cationic PTEs in soil (Figure 3). Furthermore, by raising soil pH, biochars
can also further enhance the immobilization of PTEs on soil minerals and organic
matter.

e Biochars may also retain PTEs through more specific types of surface interactions (e.g.,
ligand exchange), and precipitation and redox reactions (Figure 3). Changes in pH
caused by biochar will also influence these reactions.
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Figure 3. Diagrammatic representation of the possible adsorption mechanisms of potentially
toxic elements (PTEs) on biochar (Zhang and Wang, unpublished)
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Biochar can assist re-vegetation in some contaminated soils by reducing phytotoxicity.

Even though previous studies have demonstrated that biochars can be used as
amendments to remediate PTEs-polluted soils, most of these studies were based on
laboratory rather than field experiments. It is important to consider the
biogeochemistry of the soils and geography of the site before biochar is applied for
remediation purposes. A cost-benefit analysis may also be required to ensure other
available amendments are not equally or more suitable than biochars.

A tentative flow chart (Figure 4) may help identify the type of biochar to be used for
the remediation of soil contaminated by a specific type of PTE. However, a good
general understanding of retention mechanisms is needed prior to wide-scale
deployment of biochar for remediation.

Can your soil support plant growth No Add compost or other
without additionalfertilization? organic fertilizingamendment

Is your soil contaminated
Yes with oxy-anion-forming PTEs
(e.g., As, Se, Sb)?
Add iron oxide or
other As, Se, Sb
immobilizing
material

Yes No

Remediation of cationic PTE

If soil pH >7 If soil pH <7

Add a biochar produced from ligno-cellulosic

material with alow ash content (< 1 %), high

internal surface area (> 200 ne g-1) and high Add a biochar with a high
carboxylic groups content liming equivalence

Figure 4. Tentative decision tree for soil remediation with biochar based on Beesley et al.

(2011)° and modified by Camps Arbestain (unpublished).

Efficacy of Biochar to Reduce PTEs Mobility and Bioavailability

Numerous studies have shown that biochar application is effective in PTEs immobilization,
thereby reducing the bioavailability and phytotoxicity of PTEs (Table 1). However, the effect
of biochar on PTEs bioavailability varies with the types of biochar as well as with each PTE
(Figure 4). Therefore, specific biochars need to be selected for specific purposes of
remediation.
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Table 1. Recent research on the effects of biochar application on the mobility and
bioavailability of PTEs in soils

Production  Feedstock
PTEs . Effect Reference
temperature material
. Removal of extractable Cd by 79.6%
Cd Not available Bamboo .
within 12 days.
Cadmium content of edible part and roots
o Cotton of Brassica chinensis were reduced by
Cd 450°C
stalks 49.43% to 68.29 %, and 64.14% to 77.66
%, respectively.
o Significant reduction of As in the foliage of
As 400°C Hardwood )
Miscanthus.
Reduction of Cd in soil pore water by 10
As, Cd, o fold; Cd and Zn concentrations reduced
450°C Hardwood ) ) 9,10
Cu, Zn by 300 and 45 fold respectively in column
leaching tests.
Chicken Significant reduction of Cd uptake by
Cd, Cu, o manure Indian mustard.
550°C 11
Pb and green
waste
Reduction of the concentration of Cd in
Cd 500°C Quail litter physic nut (Jatropha curcas L.); reduction 12
increased at increasing application rates.
Cu, Pb, . . Significant reduction in concentration of
Not available Rice straw . . . 13
Cd free Cu, Pb and Cd in contaminated soils.
o Chicken Enhanced reduction of Cr(VI) to Cr(lll) in
Cr 550°C . 14
manure soil.
cu. Pb Peanut and Increase in the adsorption of Cu, Pb and
u, Fo, . . .
cd 350°C canola Cd by the soil amended with biochar. 15
straws
Cd, Cu, 750°C Rice straw Decrease in concentration of extractable 16
Pb, Zn and bamboo Cd, Cu, Pb and Zn.
R . Rice straw biochar was more effective
Cd, Cu, 500°C and Rice straw i ) )
o than bamboo biochar in decreasing 17
Pb, Zn 750°C and bamboo

extractable PTEs in soil.
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